Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bin Xu, Zhi-Qiang Feng, Jin-Tang Wang,* Li-Gang Hu and Jian Huang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: wjt@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.099$
$w R$ factor $=0.168$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Hydroxyphenyl)butan-1-one

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, was synthesized by the Fries rearrangement of phenyl butyrate. There are two independent molecules in the asymmetric unit, and all non-H atoms in each molecule are coplanar, with r.m.s. deviations of 0.050 and $0.024 \AA$. In the crystal structure, each molecule is linked to symmetry-equivalent molecules by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains along the a axis.

Comment

Hydroxyphenyl ketones are effective materials for preparing the corresponding normal alkylphenols via Clemmensen reduction (Read \& Wood, 1955) or the Huang-Minlon modification of Wolff-Kishner reduction (Furniss et al., 2004). The title ketone, (I), is a useful intermediate for the sulfamate ester which is used for the treatment of arthritis and osteoporosis (Sek et al., 1990). The crystal structure of 1-(2-hydroxyphenyl)octan-1-one has already been reported (Bin et al., 2006). We report here the crystal structure of the title compound, (I).

(I)

There are two independent molecules in the asymmetric unit of (I) and they have essentially the same geometry. The structure of both molecules is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. All non-H atoms in each molecule are coplanar, with r.m.s. deviations of 0.050 and $0.024 \AA$. The planarity can be attributed to the delocalization of the electrons over the benzene ring and carbonyl group.

In the crystal structure, each molecule is linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to symmetry-equivalent molecules (Table 2), forming chains along the a axis (Fig. 2).

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level.

Experimental

Anhydrous aluminium chloride ($310 \mathrm{~g}, 2.32 \mathrm{~mol}$) and tetrachloroethane $(300 \mathrm{ml})$ were placed in a 21 four-necked round-bottomed flask, fitted with a reflux condenser, a mechanical stirrer and a 100 ml dropping funnel. Phenyl butyrate ($339 \mathrm{~g}, 2.07 \mathrm{~mol}$) was added slowly through the dropping funnel to the stirred suspension over a period of 1.5 h . The mixture was then heated to 313 K for about 2 h , heated and stirred at $373-393 \mathrm{~K}$ for 5 h , and then hydrolyzed by pouring on to ice. The product was steam-distilled to remove the solvent and excess phenol. The residue was separated and washed free of mineral acids. It was further washed with a solution of sodium hydroxide $(19.2 \mathrm{~g})$ and ethanol $(162 \mathrm{ml})$ in water $(972 \mathrm{ml})$. The oil layer was removed and the alkaline extract was acidified with hydrochloric acid. The resulting solid was crystallized from methanol by slow evaporation to give crystals of (I) suitable for X-ray diffraction.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=164.20$
Monoclinic, $P 2_{1} / c$
$a=8.2650(17) \AA$
$b=30.986(6) \AA$
$c=7.9200(16) \AA$
$\beta=116.94(3)^{\circ} \AA$
$V=1808.2(6) \AA^{3}$

Data collection

[^1]

Figure 2
Part of the crystal packing of (I), showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded (dashed lines) chains.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.099$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.168$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.01 P)^{2}+2 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.04$
$(\Delta / \sigma)_{\text {max }}=0.006$
3535 reflections
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$

211 parameters
$\Delta \rho_{\text {min }}=-0.13 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.235(5)$	$\mathrm{O} 3-\mathrm{C} 14$	$1.228(5)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.362(6)$	$\mathrm{O} 4-\mathrm{C} 18$	$1.375(5)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$121.5(5)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15$	$121.9(5)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$118.4(5)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 13$	$119.9(5)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$122.9(5)$	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{O} 4$	$121.9(5)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$116.6(5)$	$\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 17$	$116.4(5)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 C \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.93	$2.747(6)$	172
O4-H4A $^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	0.82	1.92	$2.737(6)$	172

Symmetry code: (i) $x+1, y, z$.
H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$, and $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), $0.96\left(\mathrm{CH}_{3}\right)$ or $0.97 \AA\left(\mathrm{CH}_{2}\right)$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

organic papers

The authors thank the Centre for Testing and Analysis, Nanjing University, for support.

References

Bin, X., Ji, J.-X., Fen, Z.-Q. \& Wang, J.-T. (2006). Acta Cryst. E62, o1793o1794.
Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Furniss, S. B., Hannaford, A. J., Smith, P. W. G. \& Tatchell, A. R. (2004). Vogel's Textbook of Practical Organic Chemistry, 5th ed., pp. 827, 831. London: Addison-Wesley Longman Ltd.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Read, R. R. \& Wood, J. Jr (1955). Organic Syntheses, 3, 444.
Sek, L. Y., Clarence, N. J. \& Allan, W. D. Jr (1990). EP Patent No. EP 0403185 .
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
 Absorption correction: ψ scan
 (North et al., 1968)
 $T_{\text {min }}=0.968, T_{\text {max }}=0.992$
 3535 measured reflections

